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Abstract: Accurate precipitation prediction can help plan for different water resources management
demands and provide an extension of lead-time for the tactical and strategic planning of courses of
action. This paper examines the applicability of several forecasting models based on wavelet packet
decomposition (WPD) in annual rainfall forecasting, and a novel hybrid precipitation prediction
framework (WPD-ELM) is proposed coupling extreme learning machine (ELM) and WPD. The works
of this paper can be described as follows: (a) WPD is used to decompose the original precipitation
data into several sub-layers; (b) ELM model, autoregressive integrated moving average model
(ARIMA), and back-propagation neural network (BPNN) are employed to realize the forecasting
computation for the decomposed series; (c) the results are integrated to attain the final prediction.
Four evaluation indexes (RMSE, MAE, R, and NSEC) are adopted to assess the performance of the
models. The results indicate that the WPD-ELM model outperforms other models used in this paper
and WPD can significantly enhance the performance of forecasting models. In conclusion, WPD-ELM
can be a promising alternative for annual precipitation forecasting and WPD is an effective data
pre-processing technique in producing convincing forecasting models.

Keywords: precipitation prediction; extreme learning machine; artificial neural network; wavelet
packet decomposition; hybrid intelligent computing

1. Introduction

Precipitation prediction takes a key role in many practical applications, i.e., agri-
culture [1], streamflow forecasting [2,3], flood prediction [4], water resources manage-
ment [5], urban flooding prediction [6], facilities maintenance and control [7], etc. Accurate
precipitation prediction can help plan for different environmental water demands and
provide an extension of lead-time for the tactical and strategic planning of courses of
action. In hydrology, the forecasts of precipitation are commonly obtained from numerical
weather prediction models. However, numerical weather prediction models are unable
to provide quantitative precipitation forecasts in sufficient spatial and time resolutions
compatible with the time-space variability of precipitation processes [8]. Soft computing
approaches have several advantages: they are easy to operate and can carry out large-scale
data operation, and can adjust the model structure according to the characteristics of
the watershed, and the performance is indeed very competitive compared to numerical
models [9].

The Box-Jenkins models [10], which can be considered as the most conventional and
comprehensive technology for time series prediction, include AR (auto-regressive), ARMA
(autoregressive moving average), ARIMA (auto-regressive integrated moving average),
etc. These methods have been extensively utilized in non-stationary data analysis and
prediction in recent decades [11–15]. Rainfall forecasting was performed assuming that
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hourly rainfall follows an autoregressive moving average (ARMA) process [16]. The perfor-
mances of singular spectrum analysis (SSA) and moving average (MA) were investigated
as data-preprocessing technology. They were combined with forecasting models to im-
prove model accuracy for precipitation prediction [17]. A combination of maximal overlap
discrete wavelet transforms (MODWT) and ARMA model was presented for daily rainfall
prediction, and the hybrid model was an effective way to improve forecasting accuracy [18].
The Box-Jenkins method was applied to forecast short-term monthly rainfall, and the
model was fit in generating reliable future forecasts as well as depicting past precipitation
data [19]. A seasonal Autoregressive Integrated Moving Average (SARIMA) model was
adopted to predict monthly precipitation for thirty stations in Bangladesh with twelve
months lead-time [20]. The Box–Jenkins forecasting method with the ARIMA model was
used to predict changes in precipitation for the projected years [21].

In recent years, artificial intelligence (AI) methods such as artificial neural networks
(ANN) have been a powerful technology to solve forecasting problems. Hung et al. [22] de-
veloped an ANN technique to improve rainfall forecast performance in Bangkok, Thailand
with lead times of 1 to 6 h. Nastos et al. [23] developed ANNs to forecast the maximum
daily precipitation for the next year in Athens, Greece. Abbot and Marohasy [24] used
ANNs to forecast Queensland monthly rainfall and the forecasting results of ANNs were
superior to those of Australian officials. Abbot and Marohasy [25] performed seasonal and
monthly rainfall forecasts by mining historical climate data using ANNs. A comparison of
several advanced AI methods, namely ANFIS (Adaptive Network-based Fuzzy Inference
System) optimized with PSO (Particle Swarm Optimization), SVM, and ANN, for the
prediction of daily rainfall was undertaken by Pham et al. [26].

Among various ANN models, extreme learning machine (ELM) is a novel forecasting
method, which is employed for the non-differential activation function. It can avoid
troublesome problems such as training period, learning rate, local minimum, stopping
criterion, etc. Compared with other ANNs, the ELM can make significant improvements in
generalization ability and execution efficiency. Thus, the ELM has been broadly used in
many areas.

In the last few years, many works have been done to enhance the prediction ability
of soft computing approaches by data preprocessing technologies such as wavelet analy-
sis. Wavelet Transform (WT) is a multi-resolution signal identification and analysis tool,
which can provide a time-frequency representation of signal [27,28]. Time series modeling
techniques with wavelets have attracted enormous interest in hydrologic data analysis and
prediction. The wavelet regression (WR) technique was proposed for short-term runoff
forecasting and results illustrated that the performance of WR was better than those of
ARMA and ANN models [29]. The accuracy of the wavelet and support vector machine
(SVM) hybrid model was investigated in monthly streamflow prediction and experiment
results indicated that the hybrid model could improve the prediction accuracy [3]. A new
wavelet-SVM hybrid model was proposed for daily rainfall forecasting and results in-
dicated that the model could dramatically improve the forecasting accuracy of a single
SVM [30]. A wavelet predictor-corrector model was developed by [31] for the simulation
and prediction of monthly discharge time series. The SSA-ARIMA model was developed
to forecast mid- to long-term streamflow and results showed that the conjunction model
provided the best performance among others [32]. Karthikeyan and Nagesh Kumar [33]
ascertained the predictability of four non-stationary runoff sites using EMD (Empirical
Mode Decomposition) and wavelet-based ARMA. The wavelet neural network was studied
to predict the monthly rainfall series [34]. Three different methods (generalized regression
neural network; radial basis function; feed-forward back-propagation) based on WT were
utilized for daily rainfall forecasting [35]. The wavelet transform and Frank copula function
were coupled with mutual information-based input variable selection for non-linear rainfall
forecasting models [36]. A model was developed for performance enhancement of rainfall
forecasting over the Langat River Basin through the integration of WT and convolutional
neural network [37]. The main deficiency of WT was the restriction on the number of fre-
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quency bands. WPD was a further extension of the WT technique [38]. WPD could provide
a more complete wavelet packet tree, which extracted the features of the original signal
more comprehensively [28]. WPD has been proved to exhibit good performance for time
series forecastings, such as wind speed forecasting [39,40] and river stage forecasting [41].
However, few studies have investigated the performance of combined WPD and prediction
models for prediction in the hydrology field, which needs further exploration.

Motivated by the principle of “decomposition and ensemble” [42,43], the raw annual
rainfall data can be decomposed into different components. Each component can be pre-
dicted with the purpose of fine results and easy forecasting tasks, and the forecasting results
of all components are aggregated to generate the final prediction [2,14]. In this paper, a
novel hybrid precipitation prediction framework is presented based on an extreme learning
machine (ELM) and WPD. The framework can be described as follows: (a) WPD is used to
decompose the original precipitation data into several linear sub-layers; (b) ELM model is
employed to realize the forecasting computation for the decomposed series; (c) results of (b)
are integrated to produce the final prediction. To ascertain the performance of the proposed
framework, six models are employed for benchmark comparison: ARIMA, ARIM-WPD,
BPNN, BPNN-WPD, ELM, and ELM-WPD. Validation of the model performance is made
using four evaluation criteria, namely RMSE (root mean square errors), R (coefficient of
correlation), NSEC (Nash-Sutcliffe efficiency coefficient), and MAE (mean absolute error).

2. Study Area and Methods
2.1. Study Area

In this paper, annual precipitation data measured at Jinsha weather station, Chishui
River located in the northwest of Guizhou Province were used. Figure 1 displays the
location of the study area. The average annual precipitation of the Chishui River Basin
is 800–1200 mm, and the average surface precipitation depth is 1020.6 mm. Abundant
precipitation, frequent torrential rain events, and a fragile geological environment lead to
the frequent occurrence of debris flow, landslide, and other mountain torrents. Therefore,
it is of practical significance to forecast precipitation in this area for flood control, disaster
reduction, and agricultural production.
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The annual rainfall data from 1958 to 2016 were employed. Figure 2 shows the original
data for Jinsha station, data from 1958 to 2011 were adopted for training and those from
2012 to 2016 were used for testing. Statistical parameters of the original data are listed in
Table 1. It can be observed that the original data shows obvious skewness, indicating a
high difficulty of modeling.

Water 2021, 13, x FOR PEER REVIEW  5 of 16 
 

 

 

Figure 2. Original annual precipitation data of Jinsha weather station. 

2.2. Wavelet Packet Decomposition WPD 

WPD  is  similar  to WD,  yet  the  former  complements  the  defect  of WD  [44].  A 

three‐layer binary  tree  structure of WPD  is  shown  in Figure  3. WPD decomposes  the 

signal into approximation coefficients and detail coefficients by a mother wavelet func‐

tion. The decomposition level and mother wavelet function has a significant influence on 

the  performance  of WPD. WPD  comprises  continuous wavelet  transform  (CWT)  and 

discrete wavelet transform (DWT). CWT is expressed as follows: 

𝐶𝑊𝑇௫ሺ𝑎, 𝑏ሻ ൌ ൽ𝑥ሺ𝑡ሻ, 𝜓௔,௕ሺ𝑡ሻൿ ൌ න 𝑥ሺ𝑡ሻ𝜓∗ሺሺ𝑡 െ 𝑏ሻ/𝑎ሻ
ା∞

ି∞
/√𝑎𝑑𝑡  (1)

where  𝑥ሺ𝑡ሻ  is the input signal, a is the scale parameter, b is the translation parameter, ∗ is 
the complex conjugate, 𝜓ሺ𝑡ሻ  is  the mother wavelet  function.  𝑎  and  𝑏  in  the DWT are 

expressed as: 

൜ 𝑎 ൌ 2௜

𝑏 ൌ 𝑗2௜  (2)

where  𝑖  and  𝑗  are the scale parameter and translation parameter, respectively. 

1967 1977 1987 1997 2007 2017
0

200

400

600

800

1000

1200

1400

P
re

ci
pi

ta
ti

on
(m

m
)

Figure 2. Original annual precipitation data of Jinsha weather station.

Table 1. Input variables for different series.

No. Series Input Variables

1 original q(t−1)~q(t−9)
2 WPD1 q(t−1)~q(t−12)
3 WPD2 q(t−1)~q(t−11)
4 WPD3 q(t−1)~q(t−11)
5 WPD4 q(t−1)~q(t−12)
6 WPD5 q(t−1)~q(t−12)
7 WPD6 q(t−1)~q(t−10)
8 WPD7 q(t−1)~q(t−10)
9 WPD8 q(t−1)~q(t−9)

2.2. Wavelet Packet Decomposition WPD

WPD is similar to WD, yet the former complements the defect of WD [44]. A three-
layer binary tree structure of WPD is shown in Figure 3. WPD decomposes the sig-
nal into approximation coefficients and detail coefficients by a mother wavelet function.
The decomposition level and mother wavelet function has a significant influence on the
performance of WPD. WPD comprises continuous wavelet transform (CWT) and discrete
wavelet transform (DWT). CWT is expressed as follows:

CWTx(a, b) =
〈

x(t), ψa,b(t)
〉
=
∫ +∞

−∞
x(t)ψ∗((t− b)/a)/

√
adt (1)
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where x(t) is the input signal, a is the scale parameter, b is the translation parameter,
∗ is the complex conjugate, ψ(t) is the mother wavelet function. a and b in the DWT are
expressed as: {

a = 2i

b = j2i (2)

where i and j are the scale parameter and translation parameter, respectively.
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Figure 3. Schematic diagram of the Wavelet Packet Decomposition (WPD) method.

2.3. Extreme Learning Machine (ELM)

The ELM proposed by Huang et al. [45] is a single hidden layer feed-forward network
(SLFN), which is a modified version of a traditional ANN with the characteristic of no
adjustment made on internal parameters [46]. The ELM selects the hidden threshold
randomly in training the network. The computation of output weight does not need
complicated iteration, which greatly enhances the training speed.

For a vector (xi, yi), xi = [xi1, xi2, · · · , xim]
T ∈ Rm, yi = [yi1, yi2, · · · , yin]

T ∈ Rn,
ELM can be modeled by:

L

∑
i=1

βiG
(
ωi · xj + αi

)
= zj, j = 1, · · · , N (3)

where βi denotes the weight connecting the nodes of the hidden layer and output layer,
G(x) denotes the activation function, ωi = [ωi1, ωi2, · · ·ωim] denotes the weight vector
connecting the nodes of the input layer and output layer, xj denotes input vectors, αi
denotes the threshold of the hidden node, zj denotes the output value, and L denotes the
number of hidden nodes.

The goal of the ELM is to minimize the error between the original and predicted

values,
N
∑

j=1
‖ zj − yj ‖= 0, there exist βi, ωi and αi. So,

L

∑
i=1

βiG
(
ωi · xj + αi

)
= yj, j = 1, · · · , N (4)

Equation (4) can be expressed by the following equation:

Hβ = Y (5)
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where:

H
(
ωi, αi, xj

)
=

 g(ω1 · x1 + α1)
...

g(ω1 · xN + α1)

· · ·
· · ·
· · ·

g(ωL · x1 + αL)
...

g(ωL · xN + αL)


N×L

(6)

β =

 βT
1
...

βT
L


L×1

and, Y =

 yT
1
...

yT
N


N×1

(7)

H stands for the output matrix of hidden nodes, β is the output weight, Y is the target
output. Thus the minimum norm least-squares solution β̂ of Equation (5) is:

β̂ = H+Y (8)

where H+ represents the Moore-Penrose generalized inverse (MPGI) of H and Y is the target.

2.4. Back-Propagation Neural Network (BPNN)

The BPNN proposed by McClelland and Rumelhart [47] is a common multilayered
ANN. BPNN includes input nodes, hidden layers, and output layers. The characteristic
of BPNN is the forward transmission of the signal and the reverse transmission of the
error. BPNN minimizes the global error according to the gradient descent approach [48].
The connection weights are modified based on errors between the input and output data
in the reverse transmission. Forward and backward propagation is repeated until the
errors reach the expected precision. In this study, the Levenberg-Marquardt (LM) method,
sigmoid function, and the purelin formula were adopted as the training function, transfer
function, and output function, respectively. The mathematical formula of the BPNN model
can be expressed as follows:

xm
j = f

(
m

∑
i=1

xm−1
i wm + βm

)
(9)

where xm−1
i represents the input data of node i in layer m − 1, wm is weight of xm−1

i , βm is
the bias of layer m, xm

j is the output value of node i in layer m; f (x) denotes the transfer
function of layer m, which can be written as:

f (x) = tan h(x) =
(
ex − e−x)/(ex + e−x) (10)

The purelin formula is expressed as follows:

f (x) = x (11)

2.5. ARIMA

ARIMA, proposed by Box [49], is normally utilized in time series analysis.
The mathematical forecasting equation of ARIMA is linear, in which the predictors in-
clude autoregressive (AR) terms and moving average (MA) terms. The representation
of ARIMA is ARIMA (p, d, q), and the representation of SARIMA (seasonal ARIMA)
is ARIMA (p, d, q) × (P, D, Q)s, where (p, d, q) represents the non-seasonal order and
(P, D, Q)s denotes the seasonal order. The ARIMA [50] model can be expressed as:

yt+1 = µ + φ1yt + φ2yt−1 + · · ·+ φpyt−p+1 + εt+1 − θ1εt − θ2εt−1 − · · · − θqεt−q+1 (12)

where yt is the time series, φi is the AR coefficient, θi is the MA coefficient, µ is the model
parameter, p is the order of AR component, q is the order of MA component, and d is the
order of differentiation.
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2.6. Framework of the Proposed Hybrid Model

The architecture of the hybrid precipitation prediction framework (WPD-ELM) is
presented in Figure 4. Detailed steps of the model are indicated as follows:
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cipitation series into several sub-series; (b) data (both in original series and sub-series)
were partitioned into training and testing sets; (c) all data were tested by the Augmented
Dickey-fuller Test (ADF); (d) normalize all data within [0, 1] by:

x′i =
xi − min

1≤i≤n
{xi}

max
1≤i≤n

{xi} − min
1≤i≤n

{xi}
(13)

where xi is the original data, x′i is the normalized data series, n the number of data.
Step 2: Model building. (a) partial autocorrelation function (PACF) and precipitation

theory were employed to select the number of input variables; (b) values of the model
parameters, such as the number of hidden layers in ANN and the optimized parameters
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for ARIMA, were set; (c) ELM, ARIMA, and BPNN were used as forecasting tools to model
and predict each decomposed sub-sequence separately; (d) the results were integrated to
produce the final prediction.

2.7. Evaluation Indicators

Results of the models were evaluated with respect to four evaluation indicators.
These indexes included root mean square errors (RMSE) [51], mean absolute error (MAE) [52],
Nash-Sutcliffe efficiency coefficient (NSEC) [53], and coefficient of correlation (R). Their
equations are provided below.

RMSE =

√
1
n

n

∑
i=1

(ye(i)− yo(i))
2 (14)

MAE =
1
n

n

∑
i=1
|ye(i)− yo(i)| (15)

NSEC = 1− ∑n
i=1 (ye(i)− yo(i))

2

∑n
i=1 (yo(i)− yo)

2 (16)

R =
∑n

i=1(yo(i)− yo)(ye(i)− ye)√
∑n

i=1 (yo(i)− yo)
2 ∑n

i=1 (ye(i)− ye)
2

(17)

where ye(i), yo(i), ye and yo are the estimated, observed, mean estimated, and mean
observed values of precipitation, respectively.

3. Results
3.1. Decomposition Results

WPD was adopted to split the original annual precipitation data into several sub-series.
The frequency of the sub-series was different, and each sub-series played a different role in
the original dataset. The decomposed results for the Jinsha weather station using WPD at
level 3 are shown in Figure 5.
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Figure 5. Decomposed results for annual rainfall in Jinsha station.
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3.2. Selection of Input Variable

The selection of input variables has a significant effect on the prediction results. In this
paper, two methods were utilized to select input combinations: (a) trial-and-error method;
(b) PACF statistical approach. PACF values for all series from the Jinsha weather station are
shown in Figure 6, where PACF0 denotes the original rainfall series and others are for the
sub-series. Twelve ANN models with different input combinations were employed. Table 1
lists the input variables for different series with respect to the information in Figure 6 and
the trial-and-error method, where q(t) represents the estimated value of rainfall and q(t−p)
is the rainfall at time t − p.
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3.3. Model Development

To verify the WPD-ELM model, six models, namely ELM, BPNN, ARIMA, WPD-
ELM, WPD-BPNN, WPD-ARIMA, were employed for benchmark comparison. Detailed
information relating to these models is described in this section.

(1) ELM and BPNN models

For conventional ELM and BPNN models, the observed precipitation values are
adopted as the target value. The number of nodes in the input and output layers is equal
to the number of input variables and one, respectively. The best number of nodes in the
hidden layer is determined by the trial-and-error method. In this paper, the best numbers of
nodes in the hidden layer in the ELM and BPNN were set to twenty and eight, respectively.
The LM algorithm is adopted to train the BPNN model and the training epoch was set to
500. The sigmoidal function was selected as the activation function of the ELM and the
MPGI method was adopted to determine the hidden output weights after randomly setting
its hidden threshold and weight vector between the hidden and input layers.
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(2) ARIMA

The Augmented Dickey-Fuller (ADF) unit root test was first employed to judge the
stationarity of the input series. If the dataset was nonstationary, the difference and MA
could be used to smooth it. The results are shown in Table 2. Value h = 1 means that
the test rejects the null hypothesis of a unit root. The significance level of the p-value
was determined as 0.05. Thus, when the t-statistic value was less than the critical value
and the p-value < 0.05, the test results could be considered feasible and it would reject
the null hypothesis. It can be seen from Table 2 that the sample dataset was stationary
without a single root effect. Subsequently, the optimal ARIMA (p, d, q) structure was
mainly determined according to the minimum Bayes information criteria (BIC) value.
The resulting ARIMA models are shown in Table 3.

Table 2. Augmented Dickey-Fuller (ADF) test results.

No. Series h p-Value t-Statistic Critical Value

1 Original 1 0 −7.928 −3.489
2 WPD1 0 0.288 −2.586 −3.506
3 Diff (WPD1) 1 0.020 −2.348 −1.948
4 WPD2 1 0 −7.001 −3.504
5 WPD3 1 0.007 −4.299 −3.504
6 WPD4 1 0 −6.753 −3.504
7 WPD5 1 0.004 −4.470 −3.506
8 WPD6 1 0 −7.419 −3.504
9 WPD7 1 0 −11.164 −3.504

10 WPD8 1 0 −9.553 −3.504

Table 3. Auto-regressive integrated moving average (ARIMA) models based on BIC(Bayes informa-
tion criteria).

No. Series ARIMA BIC

1 Original ARIMA (12,1,2) 11.292
2 WPD1 ARIMA (9,1,3) 4.026
3 WPD2 ARIMA (6,0,6) 5.63
4 WPD3 ARIMA (7,0,5) 5.494
5 WPD4 ARIMA (5,0,8) 6.531
6 WPD5 ARIMA (2,0,7) 3.076
7 WPD6 ARIMA (11,0,9) 6.535
8 WPD7 ARIMA (12,0,5) 6.435
9 WPD8 ARIMA (6,0,6) 6.806

(3) WPD-ANN and WPD-ARIMA

For WPD-ELM, WPD-BPNN, and WPD-ARIMA models, the original precipitation is
split into eight sub-series using WPD, and several special hybrid models are reconstructed
for each subsequence. For the WPD method, the selection of an appropriate wavelet basis
function is very significant. The symlet wavelet is an improved approximate symmetric
wavelet function based on Daubechies wavelet, which can avoid signal distortion during
decomposition and reconstruction. Thus, a three-scale and four-order Symlet wavelet was
considered as the wavelet basis function in this paper.

3.4. Comparative Analysis

The forecast of the series was implemented using the above models with the input data
of original annual precipitation and extracted subseries. The assessment results obtained by
different models in training and test phases are shown in Tables 4 and 5. Figure 7 exhibits
the forecasting results using the six models.
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Table 4. Prediction performance of different models in training and testing phases.

Model
Training Testing

R NSEC RMSE MAE R NSEC RMSE MAE

ARIMA 0.415 0.139 129.978 101.046 −0.304 −0.535 175.136 141.295
WPD-ARIMA 0.991 0.981 19.399 14.951 0.951 0.903 44.127 37.199

BPNN 0.618 0.357 112.634 53.775 0.820 0.434 106.368 74.221
WPD-BPNN 0.978 0.957 29.445 22.924 0.988 0.973 23.176 19.947

ELM 0.628 0.394 109.308 85.583 0.819 0.649 83.698 78.656
WPD-ELM 0.986 0.9712 23.687 19.091 0.997 0.973 23.069 19.051

Table 5. Comparison of model prediction performances.

Model Index Training(%) Testing(%)

WPD-ARIMA & ARIMA R(↑) 138.81 413.25
NSEC(↑) 607.65 268.63
RMSE(↓) 85.08 74.80
MAE(↓) 85.20 73.67

WPD-BPNN & BPNN R(↑) 58.14 20.43
NSEC(↑) 167.82 124.37
RMSE(↓) 73.86 78.21
MAE(↓) 57.37 73.12

WPD-ELM & ELM R(↑) 56.91 21.66
NSEC(↑) 146.35 49.89
RMSE(↓) 78.33 72.44
MAE(↓) 77.69 75.78

Note: where (↑) represents the percentage improvement of the previous model compared to the new model, and
(↓) represents the percentage reduction and improvement of the previous model compared to the new model.
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Figure 7. Observed and forecasted results during training and testing periods by six methods.

One can see from Table 4 that when forecasting the annual precipitation in the Jinsha
weather station, WPD-ELM could attain the best results in terms of four evaluation indexes.
For example, in the testing period, the proposed hybrid model exhibited the highest
R (0.997) and NSEC (0.973) and exhibited the lowest RMSE (23.069) and MAE (19.051).
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Compared with the prediction accuracy of six models in the training period, WPD-ARIMA
provided the best results in terms of four evaluation indexes, the performance of WPD-ELM
was slightly lower than WPD-ARIMA.

Table 5 lists the improvements obtained by several models. In the training period,
WPD-ELM improved the ELM model with a 77.69% and 78.33% reduction in MAE and
RMSE, respectively. Besides, improvements in prediction results regarding the NSEC and
R were 146.35% and 56.91%, respectively. In the testing period, compared to the ELM
model, WPD-ELM yielded reductions in terms of MAE and RMSE with 75.78% and 72.44%,
respectively. Besides, the improvements in the forecasting results of WPD-ELM regarding
the NSEC and R were 49.89% and 21.66%, respectively. Compared with the WPD-BPNN
and WPD-ELM models, WPD-ARIMA could exhibit the best improvements in terms of
all measures during both training and testing periods. Meanwhile, we could see that the
improvements of WPD-BPNN were superior to WPD-ELM, whilst there was no dramatic
difference between them.

The following conclusions could be drawn based on this analysis: (a) when comparing
the performance of three single models with three hybrid models, the hybrid models at-
tained better performance during both training and testing periods; (b) ELM outperformed
the other single methods; (c) WPD-ARIMA demonstrated the optimal performance in terms
of all measures in the training period, and WPD-ELM attained the best forecasting accuracy
in terms of four evaluation indexes during the testing phase; (d) ARIMA provided the
worst results during both training and testing periods; (e) there was no significant differ-
ence in the forecasting accuracy between BPNN and ELM and those between WPD-BPNN
and WPD-ELM.

In addition, the prediction accuracy was different in terms of different phrases.
The performance of the ARIMA method during the testing period was far inferior to
that during the training period. The WPD-ARIMA model was of the highest level in the
training period, but the performance in the testing period was the worst among several
hybrid models, which meant the generalization ability of WPD-ARIMA was very poor.
However, it was considered that the model had strong generalization capability for reliable
performance when it performed modestly during the training period and well in the testing
period, e.g., BPNN, WPD-BPNN, ELM, WPD-ELM.

The performances of all forecasting models developed in this paper during the training
and testing phases are shown in Figure 7. One can clearly see that the performances of the
hybrid models were better than those single methods as their trend lines were very close to
the original data line. Meanwhile, the algorithm prior to the improvements had difficulty
capturing the drastic changes in rainfall.

3.5. Discussion of Results

The following should be considered before analyzing the results. The forecasting
performance of the testing phase plays a greater role than that of the training phase because
the training phase is utilized to train the model, and its performance is measured by
the data related to the modeling. However, the testing dataset does not participate in
modeling, so its performance can truly reflect the model application efficiency. Based on
the above considerations, we can draw the following conclusions from the above analysis.
Firstly, the WPD-ELM model proposed in this paper can attain the best performance in
terms of all statistical measures. Secondly, WPD is suitable for decomposing the annual
precipitation series as it can overcome the complicated abrupt change of precipitation.
Thirdly, there are obvious differences between the accuracies of the ARIMA, BPNN, and
ELM models, which highlight the significant role of the training tool in modeling. Finally,
the annual rainfall series decomposed by WPD as input in modeling can substantially
enhance forecasting accuracy.

The WPD-ELM model outperforms all compared models. The reasons why the novel
method can improve the accuracy are analyzed below. Firstly, WPD decomposes the
original data into more linear subseries, reducing the modeling difficulty. Secondly, the
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ELM is employed to model the input-output relationship in each subsequence. The random
initialization of the feature mapping parameters in the algorithm enhances the mutual
independence of each input signal, creates a larger solution space, and improves the
generalization ability. Finally, the WPD-ELM hybrid model overcomes the shortcomings of
the single model by generating a synergistic effect in prediction.

Besides, this paper investigates the performance of WPD-ELM in annual precipitation
forecasting. There are still several research directions to fill the research gap in future work.
The first is to study an appropriate optimization algorithm to improve the performance
of the WPD-ELM model. The study is carried out based on a limited dataset, so the
second is to test the generalization of the proposed model. Due to uncertainties caused by
the stochastic processes in the neural network model, the last major issue is to solve the
problem of randomness. In future research, it is necessary to conduct in-depth research on
the above three aspects to study a more accurate prediction model and make contributions
to the field of hydrological forecasting.

4. Conclusions

Improving the accuracy of long-term annual precipitation forecasting is an impor-
tant yet challenging work in water resources management. We propose a novel hybrid
precipitation prediction framework (WPD-ELM). Firstly, WPD is adopted to decompose
the original annual precipitation series into several sub-series. Secondly, ANN models
are utilized to predict each sub-series. Finally, results are integrated to produce the fi-
nal prediction. The annual precipitation series gathered at the Jinsha weather station of
Guizhou Province in China are taken to develop the empirical study. Results indicate that
WPD-ELM outperforms other benchmark methods in this paper in terms of four evaluation
indicators. Meanwhile, the performances of the hybrid models are better than those of
the standard BPNN, ARIMA, and ELM, which means that WPD can significantly improve
the forecasting accuracy. In conclusion, WPD can be used to preprocess precipitation data
and WPD-ELM can provide more accurate and reliable results, thus, it may be a promising
alternative for long-term precipitation prediction.
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